
Projeto de Data Science

Slow Changing Dimensions

in a Data Warehouse Using Hive

Fellipe Augusto Soares Silva

2020

2

Chapters

Summary ... 4

1. Introduction .. 5

• Apache HDFS ... 6

• Hadoop Yarn ... 6

• Hadoop MapReduce ... 6

• Secondary NameNode .. 6

• NameNode .. 6

• JobTracker ... 6

• DataNode .. 6

• TaskTracker ... 6

• Zookeeper ... 8

• HBase .. 9

• Pig .. 9

• Spark ... 9

• Sqoop .. 9

• Flume .. 9

• Mahout.. 9

• Standalone .. 9

• Pseudo - Distributed: .. 10

• Fully Distributed .. 10

2. Business Problem .. 11

3. Database Used .. 13

4. Project Development .. 15

4.1 Source Database ... 15

4.2 Database and MySQL on the VM .. 15

4.3 Loading Data on Hive with Apache Sqoop .. 18

4.3.1 Troubleshooting .. 18

4.4 Creating SCD table on Hive ... 21

4.5 Slow Changing Dimension ... 22

5. Final Considerations .. 26

3

Figures

Figure 1 - Hadoop Ecosystem .. 5

Figuea 2 - Relational Database .. 13

Figure 3 - Business problem table ... 14

Figura 4 - Pipeline Projeto ... 15

Figure 5 - Status MySQL .. 16

Figure 6 - Databases inside MySQL ... 16

Figure 7 – Tables within Database AdventureWorks .. 17

Figure 8 - Last records of table "contact" ... 17

Figure 9 - HDFS with Transformation Table .. 19

Figure 10 – HDFS Records ... 20

Figure 11 – Hive Records ... 20

Figure 12 – Hive Records II .. 21

Tables

Table 1 - Slow Changing Dimension Example ... 11

Table 2 - Slow Changing Dimension Type 1 .. 11

Table 3 - Slow Changing Dimension Type 2 .. 12

Table 4 - Slow Changing Dimension Type 3 .. 12

Table 5 - Table before Slow Changing Dimension .. 22

Table 6 - Table After Slow Changing Dimension ... 24

file:///C:/Users/fellipe.silva/Dropbox/Coisas%20Importantes/BI/Data%20Science%20Academy/0-Formação%20Cientista%20de%20Dados/3-Engenharia%20de%20Dados%20com%20Hadoop%20e%20Spark/16A-SCD(Projeto_Final-Eng).docx%23_Toc43908550

4

Summary

This project was developed with the purpose of applying rules of changes in dimensionality

and storage of previous versions of data using the concept of Slow Changing Dimension (SCD) in

a Hadoop cluster.

 A Slow Changing Dimension will be applied to a Data Warehouse using Hive that is running

on Apache Hadoop, and for that to happen it will be necessary to make total configuration of a

pseudo-distributed cluster to store and process the data.

 The cluster will be built in a Linux environment through a Virtual Machine, that is, through

the virtualization of the environment on my physical machine. So I also performed the entire

configuration of the Virtual Machine preparing to receive Hadoop ecosystem.

 After configuring the Virtual Machine and the Hadoop Environment with Pseudo -

Distributed architecture, I performed the transfer of the Physical Machine Database to the Virtual

Machine storing it in MySQL configured on Linux.

 With the Database in the Virtual Machine we started the business problem using Sqoop

(data transfer tool for Apache Hadoop) to load a table from the source Database into a datalake

in HDFS (Hadoop Distributed File System), so we leave only the columns necessary for testing the

application.

 Inside Hive we created the table schema that will receive and manage the occurrence of

Slow Changing Dimension, preparing to be able to receive new data and compare with the

information contained therein, making the versioning of altered data keeping a history of the last

modifications.

 Finally, I developed a sequence of codes so that Hive can make Slow Changing Dimension,

that is, read, compare and add new information to the table, making changes to dimensions

intelligently whenever they change.

Palavras – Chave: Data Engineering, Data Science, Apache Haddop, Hadoop Ecosystem, Structured

Databases, Relational Database, Sqoop, Hive, Data Warehouse, Slow Changing Dimension, Virtual

Machine, Linux, HDFS.

5

1. Introduction
 This project was developed using an Oracle Virtual Machine1 (VM) where I installed and

configured the virtualization of the Linux2 Operational System from start to finish through the

CentOS3 distribution.

 A Virtual Machine is a computational environment that runs on the physical machine but

is virtualized and isolated from the real machine. In the VM we can perform tests on different

operational systems such as MacOS, Windows, Linux without leaving the base operational system

of the machine and can even share items between them.

 The choice of CentOS was made because it is a free and robust project regarding the

installation of an open - source ecosystem. During the installation a series of configurations were

adjusted in order to prepare the virtual environment to receive a Pseudo - Distributed

environment from Hadoop Ecosystem4.

 Hadoop is an open source framework used for distributed storage and parallel processing,

it is fault tolerant, scalable, secure and developed for distributed computing in a computer

cluster. It is the basis for operations with large data sets, Big Data, as it offers a robust ecosystem

1 https://www.oracle.com/br/virtualization/virtualbox/
2 https://en.wikipedia.org/wiki/Linux
3 https://www.centos.org/
4 https://hadoop.apache.org/

Figure 1 - Hadoop Ecosystem

6

with different modules that assist in data collection (such as Flume5 and Sqoop6), storage with

HDFS (Hadoop Distributed File System), data structuring (with Hive7 and Hbase8), data processing

with MapReduce operations using for example Spark9, and can also perform Machine Learning

on large data sets distributed by the cluster with Apache Mahout10.

 Hadoop is an Apache Foundation project, and is mainly composed of three modules:

• Apache HDFS: Responsible for distributed storage in the cluster;

• Hadoop Yarn: Responsible for resource management (memory, CPU ...);

• Hadoop MapReduce: Responsible for parallel processing of large data sets.

An HDFS architecture works with the Master / Worker functions, that is, a Master

machine as the master of the entire cluster managing the storage and parallel processing

communicating with Workers nodes using a trace of the operations performed.

In a Hadoop environment we have a computer running Master processes (management

processes) that are:

• Secondary NameNode: function similar to a backup, although it can assume
management functions.

• NameNode: manages HDFS;

• JobTracker: manages MapReduce Jobs.

The other computers in a cluster are the slaves (Slaves / Workers) and it is these processes

that do the job itself:

• DataNode: stores and retrieves data from HDFS;

• TaskTracker: performs the Mapping and Reduction work.

DataNode and TaskTracker run on the same machine.

A Client machine, for example my PC running R or Python language, makes a request to

the Master computer and this in turn puts the Workers to work either to store or retrieve data

from the cluster or perform MapReduce operations.

The Master (or name node) must be the machine within the cluster with the best

processing among all. It keeps all your information in memory and to manage all this it has two

very important data structures (two files):

5 https://flume.apache.org/
6 https://sqoop.apache.org/
7 https://hive.apache.org/
8 https://hbase.apache.org/
9 https://spark.apache.org/
10 https://mahout.apache.org/

7

• Fsimage: responsible for storing structural information of the logs such as

mapping and namespace of files, in addition to the location of replicas of these files.

• EditLog: responsible for storing all changes to file metadata.

A function as important as distributed storage and parallel processing is replication

because in addition to dividing files into blocks, HDFS replicates blocks in an attempt to increase

security. By default, HDFS has three (3) replicas allocated on different machines in the cluster

(this amount can be configured).

There is still a recommendation for safety and reliability and performance to allocate two

(2) replicas in the same rack, but on different machines and the other replica in a different rack.

As physically communication between machines in the same rack is faster than with other

racks, for performance reasons when selecting a replica for the process, HDFS gives preference

to the replica that belongs to the same rack.

Another benefit with Replication is greater fault tolerance and data reliability, because if

a worker machine fails, processing will be done by another machine that contains the replica of

that block without the need for data transfer or interrupting application execution.

There are many benefits to working with Apache Hadoop but each of the modules of the

Hadoop ecosystem requires a specific configuration that can be found in the official

documentation. During the presentation of this project I will highlight the most important

configurations I used and for the other configurations I advise you to look for information in the

reference material11.

After installing CentOS with the Linux Operating System, you need to install Hadoop on

the Virtual Machine as it forms the basis of the Ecosystem, other products of the Hadoop

Ecosystem depend either on HDFS or MapReduce.

When installing CentOS, I created two users:

• root: who is the administrator of the environment

• fellipe: Linux environment user

I could use the fellipe user but for best practices I will build my Hadoop environment on

a new user: the hadoop user. In this user I will parameterize my entire parallel and distributed

computing environment using HDFS and other ecosystem modules.

11 https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html

8

In practice, Apache Hadoop is installed without an installer, that is, a file is downloaded,

unzipped, inserted into a folder on the VM and configured with its environment variables. After

that it is ready for use.

The files needed for configuration are:

• .bashrc

• core-site-xml

• hdfs-site.xml

As stated earlier, the items to be configured within these files are in the official product

documentation12.

Another important module for the operation of HDFS is YARN13. This module is

responsible for managing jobs within HDFS and must be started together with HDFS so that both

the storage and processing of data distributed by the cluster can take place. The files needed for

configuration are:

• mapred-site.xml

• yarn-site.xml

To initialize both HDFS and YARN after configurations done, we must type the following

commands in the terminal:

• start-dfs.sh

• start-yarn.sh

As a result we have to have the following services running on the OS:

• NameNode

• DataNode

• SecondaryNameNode

• NodeManager

• ResourceManager

Continuing to install the Hadoop ecosystem,:

• Zookeeper: It aims to provide a coordination service for high-performance

distributed applications that provides the means to facilitate the tasks of configuring a machine

in the cluster, synchronizing distributed processes, and groups of services.

12 https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html
13 https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

9

• HBase: It is a distributed and scalable database, being a NoSQL database, that is,

it allows you to store data without worrying about the schema.

• Hive: Its main functionality is to provide an infrastructure that allows the use of

SQL language, in fact a modification of SQL that is HiveQL and allows to build a kind of data

warehouse under Apache Hadoop. If the goal is to work with structured data and execute almost

SQL queries, Apache Hive is an excellent alternative.

• Pig: It is a high level language oriented to data flow and execution for parallel

computing. The optimization of Apache Pig does not change the configuration of the Hadoop

cluster because it is used in client mode providing a language called Pig Latin and a controller

capable of transforming programs of the Pig type into sequences of the MapReduce

programming model. What it does is convert the Pig Latin code to JAVA or Scala format (Hadoop

programming languages) in order to work on Jobs without much difficulty.

• Spark: Processing of mapreduce jobs within the cluster

• Sqoop: Data transfer tool for Apache Hadoop that can put data from a database

into HDFS, Hive or HBase, or do the opposite way of exporting data from this distributed platform

back to the relational database.

• Flume: Allows me to bring data from the most varied sources to Apache Hadoop,

including log data (when running any application it generates output - information of who

accessed the application, when it accessed, what resources it used, if there was memory overflow

and so on)

• Mahout: Hadoop Ecosystem product to work with Machine Learning. Simplifies

(as Pig does) the Machine Learning process on distributed data.

We have three modes of execution of Haddop where each item of the ecosystem must

be configured according to the chosen mode:

• Standalone: In this mode, hadoop is configured to run in local mode. This mode is

most recommended for the development phase, which is when most errors normally occur, being

necessary to carry out several tests of the execution of the application of my data analysis.

10

• Pseudo - Distributed: In this mode, all the configurations that are necessary for the

execution of a cluster are applied, however, the whole application is processed in Local Mode. Although

it is not actually executed in parallel, this mode allows its simulation as it uses all the processes of an

effective parallel execution: NameNode, DataNode, JobTracker, TaskTracker and SecondaryNameNode.

• Fully Distributed: Mode used for distributed processing of the Hadoop application

on a computer cluster. In this option it is also necessary to edit the XML files previously presented,

defining specific parameters and the location of SecondaryNameNode and Nodes Workers.

However, as we have several computers in this mode, we must indicate which machines will

actually run each component.

Each module was configured following the Hadoop Pseudo - Distributed execution mode

so that we would be getting as close as possible to a real environment.

 The beginning of the solution to any business problem lies in the understanding of the

problem itself, which will be presented in the next chapter.

11

2. Business Problem

As described in the title of the project we will develop Slow Changing Dimensions in a

Data Warehouse Using Hive but to fully understand the problem we will divide the concepts

involved here.

Data Warehouse is a repository that is oriented by variables, subjects, integrated and

variable over time, being organized to assist in making strategic decisions. In addition, a Data

Warehouse has the characteristic of using all company data and storing historical data

maintaining the authenticity and veracity of the information, thus matching the facts with the

time of its occurrence.

A Data Warehouse is fed through an ETL process (Extract - Transform - Load) where the

collection of data at the source (from operating systems, ERPs, CRMs, web files, databases,

among others) undergoes a transformation by adjusting information applying standards and later

uploading this data to the Data Warehouse making them available to analysis teams like Data

Scientists.

The dimensions of a Data Warehouse correspond to the data stored in this DW (such as

name, telephone, email, in case of registration tables for example) and a Slow Changing

Dimension (SCD) is a dimension that changes slowly in this Data Warehouse and which rarely

changes, but when it does change it is necessary to classify the type of existing change and update

the corresponding fields, adopting an organized approach in order to correctly document the

type of change. Let's consider the following dimension as an example:

Item ID Name Occupation

749 63 Thais Pagani Marketing
Table 1 - Slow Changing Dimension Example

Each Slow Changing Dimensions varies according to the data update characteristic in the

Data Warehouse and we can list 3 alternatives to deal with them:

• Slow Changing Dimensions Type 1: in this type the changes overlap the existing

data without leaving a trace of previous data. It is the simplest SCD model but may not be the

most suitable for corporate environments as there is no version control for the modified registry.

Note in the table below that when changing the user's Occupation, we lost the previous

Occupation.

Item ID Name Occupation

749 63 Thais Pagani Brand Manager
Table 2 - Slow Changing Dimension Type 1

12

• Slow Changing Dimensions Type 2: in this type we have a greater control of

versioning because the previous data is preserved with the insertion of a new line preserving

what was not changed and inserting the modifications. Note in the table below that when

changing the occupation a new line was inserted keeping the previous one, the only problem

here is that some kind of control of the number of stored changes is necessary because the table

can assume much greater proportions if each change is inserted in a new line.

Item ID Name Occupation Version

749 63 Thais Pagani Marketing 001

749 63 Thais Pagani Brand Manager 002
Table 3 - Slow Changing Dimension Type 2

• Slow Changing Dimensions Type 3: this type is similar to type 2 but we do not add

rows with all the data but a column with only the modifications. Note in the table below that we

preserve the previous data and add the user's new occupation. This case must also follow a

systematic control so that the table size does not grow without control and compromises the

Data Warehouse.

Item ID Name Occupation New_Occupation

749 63 Thais Pagani Marketing Brand Manager
Table 4 - Slow Changing Dimension Type 3

A more complex and complete model would be a Slow Changing Dimension Hybrid where

the combination of different SCDs mentioned above are assumed according to the business

problem and the company's wishes. For our case we will use a Slow Changing Dimension Type 3.

Another concept involved in the project is the use of Apache Hive, a framework that

allows the user to work in a structured way with data stored in HDFS through commands close

to SQL, HiveQL.

With Hive we will take advantage of Apache Hadoop features like distributed storage and

parallel processing as it was developed on top of Hadoop. Hive allows us to work in a structured

way in a Big Data universe where data is mostly unstructured, allowing us to define the structure

of the data to be stored and later summarized, consulted and analyzed.

Returning to the business problem, after all the concepts elucidated, what we are going

to do here is load a piece of a relational database to a datalake inside Apache Hadoop using HDFS

for storage, assemble a schema inside Hive loading this data from the datalake and then assemble

a HiveQL statement so that when changes occur in the dimensions of the original database, SCDs

also occur within the Hive table.

13

3. Database Used

To carry out the business problem, a relational database was provided. In it we have

several tables that communicate with each other with different information from a company

called AdventureWorks. The Database has 5 main sectors:

• Sales: Sales Sector

• Purchasing: Purchasing Sector

• Person: Customer Information

• Production: Products Production Sector

• HumanResources: Human Resources Sector

Below you can see the schema of this database and the relationship between its tables:

Figuea 2 - Relational Database

14

To show how Slow Changing Dimension works, we will use only one table (figure below)

so that we can replicate the concept for any other table, be it a table in this database or any other

source of information. Following table used:

Figure 3 - Business problem table

Note in the image above that we have a table with user information such as First Name,

Middle Name, Last Name, Email, Telephone, Password, Additional Information and Modification

Date. As the objective here is to study the concept involved in a Slow Changing Dimensions in a

Data Warehouse using Hive, I will use part of the information within this table indicating the

success in the operation of updating its dimensions.

15

4. Project Development

To facilitate understanding, I developed the following pipeline in order to explain each

step that we will go through during development:

Figura 4 - Pipeline Projeto

4.1 Source Database

The source database is the one on the AdventureWorks company server that is constantly

updated by customers, users and company employees as new transactions take place.

This is the database that we will use for the next step and it is from it that the changes

come so that I can perform Slow Changing Dimensions in a Data Warehouse Using Hive.

4.2 Database and MySQL on the VM

During the configuration phase of my Virtual Machine I performed the installation and

parameterization of MySQL on Linux so that I can import the source database. In this way I

downloaded the database on my physical machine, shared it with the virtual machine, granted

access permissions and transferred the complete database to MySQL.

First checking if we have MySQL active:

Source Database

AdventureWorks

(Physical Machine)

Database

AdventureWorks

(MySQL VM)

Preparation

Table inside

the Hive

Table with

SCDs on Hive

Sqoop SCDs

16

Figure 5 - Status MySQL

After loading the database and all its tables, we will perform a query and view the

databases that we have on MySQL:

Figure 6 - Databases inside MySQL

As indicated by the red arrow in the figure above we have the loaded database and all its

tables.

17

Viewing the tables, including the table that we will use in this project (red arrow in the

image below):

Figure 7 – Tables within Database AdventureWorks

Following is a query performed on MySQL installed on the VM using the following SQL

command to return all columns in the “contact” table limiting to the last 10 records:

SELECT * FROM contact ORDER BY contactID DESC LIMIT 10;

Figure 8 - Last records of table "contact"

After transferring and checking that everything is working perfectly with our database,

we can define two premises:

• First: it is possible to observe that we have null data within the table, but I will not

worry about treating this information as it is not the objective of this project;

• Second: we have 15 columns in the table, as shown above, to improve the

operation I will limit the SCDs on Hive to the 7 main columns (ContactID, Title, FirstName,

LastName, EmailAddress, Phone, ModifiedDate). So we developed the project without running

away from the main concept of seeing SCDs happening as the source database is updated.

18

4.3 Loading Data on Hive with Apache Sqoop

Note in figure 4 that our next step is to load the “contact” table into Hive, forming a

preparation table. In this step, I will load the data into my datalake inside HDFS without worrying

about formatting or deleting columns. Just transfer a table from a source database into Hadoop.

To carry out the transfer, we have several platforms that use communication protocols

and insert data according to specifications. In this project, I chose to use Apache Sqoop as it is an

efficient tool for transactions between Hadoop and structured datastores.

Apache Sqoop14 is basically an ETL tool that allows you to bring data from HDFS to a

relational database, or to bring data to HDFS from a relational database.

To use Sqoop, I downloaded the file from the Apache Foundation website and configured

it according to the documentation, but to perform ACID transactions (set of database transaction

properties that allows the movement of databases and tables between platforms), it is necessary

to adjust some variables in both Sqoop and Hive.

4.3.1 Troubleshooting

First we have to check if the libraries shared by both are compatible. Enter the path where

hive libraries are installed: /hive/lib and identify the version of hive-common-X.X.X.jar. Copy this

file into the path where the sqoop libraries are installed: /sqoop/lib if there is a different version

in sqoop and delete the different version.

Then edit the environment variables by entering the path where Hive settings should be

executed, because we are going to edit the settings so that we can force sqoop to read these

settings and perform ACID transactions.

Inside /hive/conf folder, search for the file hive-site.xml (if it doesn't exist, make a copy

of hive-default.xml) and modify the following settings:

• hive.support.concurrency –> true

• hive.enforce.bucketing –> true

• hive.exec.dynamic.partition.mode –> nonstrict

• hive.txn.manager –> org.apache.hadoop.hive.ql.lockmgr.DbTxnManager

• hive.compactor.initiator.on –> true

14 https://sqoop.apache.org/

19

• hive.compactor.worker.threads –> a positive number

• hive.auto.convert.join -> false

All these configurations were made according to the documentation available at:

https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions

That done, we can use sqoop to move the “contact” table from the adventureworks

database present in MySQL into Hive, which is running on HDFS, with the following command:

sqoop import --connect jdbc:mysql://localhost:3306/adventureworks?serverTimezone=UTC –username

root --P –columns ContactID,Title,FirstName,LastName,EmailAddress,Phone,ModifiedDate --table

contact --target-dir /user/hive/warehouse/source/contact --fields-terminated-by "," --hive-import

--create-hive-table --hive-table datalake.contact

This instruction will create the “source” folder inside HDFS and insert the “contact” table

from MySQL inside it. When the table is finished transporting, sqoop will import the “contact”

table into the datalake on hive and clean the “source” directory created initially.

Let's look at each command in the instruction above:

• connect: JDBC connection between MySQL and Hadoop Server

• username: username responsible for the database

• P: requires password to connect to the database, continuing the process

• columns: columns of the source table that I want to transfer. Note that I have not

used all of them

• table: table that will be accessed for the transfer process

• target-dir: destination directory on HDFS (Hadoop Distributed File System)

• fields-terminated-by: I may specify the column separator to be imported

• hive-import: instructions to import a table into the section

• hive-table: hive table where data will be inserted

Accessing our cluster we can see that this transfer happened successfully:

Figure 9 - HDFS with Transformation Table

Within HDFS we can also access the data recorded there, as follows:

https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions

20

Figure 10 – HDFS Records

Although it is possible to access and view the transformation table, we can view this table

more clearly within Hive itself:

Figure 11 – Hive Records

21

4.4 Creating SCD table on Hive

Our next step is to create the target table for our business problem, the table that will

store Slow Changing Dimensions in Hive.

To create this table in Hive so that it is possible to carry out transactions between

databases, it is mandatory that the table has transactional properties and that it is of the ORC

(Optimized Row Columnar) type. The ORC format improves Hive's writing, reading and processing

performance by providing an efficient way to store data.

CREATE TABLE datalake.contact_scd(

 ContactID int,

 Title string,

 FirstName string,

 LastName string,

 EmailAddress string,

 EmailAddress_OLD string,

 Phone string,

 Phone_OLD string,

 ModifiedDate date)

COMMENT 'This table holds the SCDs from Source RDBMS table named contact'

ROW FORMAT DELIMITED

FIELDS TERMINATED BY ','

LINES TERMINATED BY '\n'

STORED as ORC

TBLPROPERTIES ("transactional"="true");

The command above creates our SCD table "contact_scd", inside the datalake, inserting

columns "*** _ OLD" representing the record prior to the update thus making a Slow Changing

Dimension Type 3.

Figure 12 – Hive Records II

22

At that point we have an empty table and as we already load the preparation table

(contact) with the columns we need, we can move the initial data into the “contact_scd” table

and wait for new data to make adjustments to the dimensions as they happen.

To make it clear how SCDs work in practice during the design testing phase, I’ll manually

enter some data instead of loading the source table from adventureworks.

INSERT INTO datalake.contact_scd VALUES

 (1,'Mr.','Gustavo','Achong','gustavo0@adventure-works.com','null','398-555-0132','null','2004-05-03'),

 (2,'Ms.','Catherine','Abel','catherine0@adventure-works.com','null','747-555-0171','null','2005-05-16'),

 (3,'Ms.','Kim','Abercrombie','kimmy2@yahoo-works.com','null','334','null','2005-05-07'),

 (4,'Sr.','Humberto','Acevedo','berto0@adventure-works.com','null','55-0127','null','2005-03-26'),

 (5,'Sra.','Pilar','Ackerman','pill@adventure-works.com','null','1 500 555-0132','null','2002-05-30'),

 (6,'Ms.','Frances','Adams','frn@sslv-works.com','null','991-555-0183','null','2001-09-26'),

 (7,'Ms.','Magret','Smith','margaret0@adv-works.com','null','959-555-0151','null','2000-01-22'),

 (8,'Ms.','Cala','Adams','carla0@adventure-works.com','null','107-555-0138','null','2001-01-11'),

 (9,'Mr.','Jay','Adans','jay1@gmail-works.com','null','158-555-0142','null','2000-11-02');

The information above was taken from the first lines of the source table but I made

changes to some data, so when I import the original table (preparation table I imported from

MySQL, which in turn came from the server of the company adventureworks) we will see Slow

Changing Dimension going on.

Table 5 - Table before Slow Changing Dimension

4.5 Slow Changing Dimension

We arrived at the critical point of the project, the moment when we are going to create

instructions for SCDs to happen. There is no rule here, everything depends on the business

problem, for our case we want to make comparisons between the source database and the target

database that will store the SCDs in Hive.

To perform SCDs, Hive has the following instructions that assist and take the work to a

higher level of efficiency during operations:

ContactID Title FirstName LastName EmailAddress EmailAddress_OLD Phone Phone_OLD ModifiedDate

1 Mr. Gustavo Achong gustavo0@adventure-works.com null 398-555-0132 null 05/03/2004

2 Ms. Catherine Abel catherine0@adventure-works.com null 747-555-0171 null 05/16/2005

3 Ms. Kim Abercrombie kimmy2@yahoo-works.com null 334 null 05/07/2005

4 Sr. Humberto Acevedo berto0@adventure-works.com null 55-0127 null 03/26/2005

5 Sra. Pilar Ackerman pill@adventure-works.com null 1 500 555-0132 null 05/30/2002

6 Ms. Frances Adams frn@sslv-works.com null 991-555-0183 null 09/26/2001

7 Ms. Magret Smith margaret0@adv-works.com null 959-555-0151 null 01/22/2000

8 Ms. Cala Adams carla0@adventure-works.com null 107-555-0138 null 01/11/2001

9 Mr. Jay Adans jay1@gmail-works.com null 158-555-0142 null 11/02/2000

23

• INSERT

• UPDATE

• DELETE

• MERGE

• WHEN MATCHED / WHEN NOT MATCHED

The “WHEN MATCHED / WHEN NOT MATCHED” instruction is largely responsible for

comparisons between database tables and it is from there that we take actions to adjust the

dimensions of the Data Warehouse.

Here is the instruction I developed to perform a Slow Changing Dimension in our DW:

 1-> MERGE INTO datalake.contact_scd AS TR

 2-> USING datalake.contact AS SR

 3-> ON TR.ContactID = SR.ContactID

 4-> WHEN MATCHED AND hash(TR.Title, TR.FirstName, TR.LastName, TR.EmailAddress, TR.Phone) <>

 hash (SR.Title, SR.FirstName, SR.LastName, SR.EmailAddress, SR.Phone) THEN

 5-> UPDATE SET

 6-> Title = SR.Title, FirstName = SR.FirstName, LastName = SR.LastName,

 EmailAddress_OLD = TR.EmailAddress, EmailAddress = SR.EmailAddress,

 Phone_OLD = TR.Phone, Phone = SR.Phone,

 ModifiedDate = SR.ModifiedDate

 7-> WHEN NOT MATCHED THEN

 8-> INSERT VALUES (SR.ContactID, SR.Title, SR.FirstName, SR.LastName, SR.EmailAddress, 'null',

 SR.Phone, 'null', SR.ModifiedDate);

1-> Definition of the target table in which the SCD should be performed

2-> Definition of the table from the Source Database

3-> Definition of the column to be used as a comparison key between tables

4-> Instruction that will determine which comparisons should be taken into account when

updating the table. The hash command is a smart way to make comparisons between multiple

columns.

5-> Update instruction if the previous line is satisfied

6-> Information to be updated

7-> Instruction in case no record was found in the target table

8-> Insert new values as noted in the source table

With the insertion of the above commands in Hive we have a Slow Changing Dimension
occurring in our data as we can see in the following table extracted from the datalake in Hive:

24

Table 6 - Table After Slow Changing Dimension

ContactID Title FirstName LastName EmailAddress EmailAddress_OLD Phone Phone_OLD ModifiedDate

1 Mr. Gustavo Achong gustavo0@adventure-works.com null 398-555-0132 null 05/03/2004

2 Ms. Catherine Abel catherine0@adventure-works.com null 747-555-0171 null 05/16/2005

3 Ms. Kim Abercrombie kimmy2@yahoo-works.com null 334 null 05/07/2005

4 Sr. Humberto Acevedo berto0@adventure-works.com null 55-0127 null 03/26/2005

5 Sra. Pilar Ackerman pill@adventure-works.com null 1 500 555-0132 null 05/30/2002

6 Ms. Frances Adams frn@sslv-works.com null 991-555-0183 null 09/26/2001

7 Ms. Magret Smith margaret0@adv-works.com null 959-555-0151 null 01/22/2000

8 Ms. Cala Adams carla0@adventure-works.com null 107-555-0138 null 01/11/2001

9 Mr. Jay Adans jay1@gmail-works.com null 158-555-0142 null 11/02/2000

ContactID Title FirstName LastName EmailAddress EmailAddress_OLD Phone Phone_OLD ModifiedDate

1 Mr. Gustavo Achong gustavo0@adventure-works.com null 398-555-0132 null 05/03/2004

2 Ms. Catherine Abel catherine0@adventure-works.com null 747-555-0171 null 05/16/2005

3 Ms. Kim Abercrombie kim2@adventure-works.com kimmy2@yahoo-works.com 334-555-0137 334 05/16/2005

4 Sr. Humberto Acevedo humberto0@adventure-works.com berto0@adventure-works.com 599-555-0127 55-0127 05/16/2005

5 Sra. Pilar Ackerman pilar1@adventure-works.com pill@adventure-works.com 1 (11) 500 555-0132 1 500 555-0132 05/16/2005

6 Ms. Frances Adams frances0@adventure-works.com frn@sslv-works.com 991-555-0183 991-555-0183 05/16/2005

7 Ms. Margaret Smith margaret0@adventure-works.com margaret0@adv-works.com 959-555-0151 959-555-0151 05/16/2005

8 Ms. Carla Adams carla0@adventure-works.com carla0@adventure-works.com 107-555-0138 107-555-0138 05/16/2005

9 Mr. Jay Adams jay1@adventure-works.com jay1@gmail-works.com 158-555-0142 158-555-0142 05/16/2005

10 Mr. Ronald Adina ronald0@adventure-works.com null 453-555-0165 null 05/16/2005

11 Mr. Samuel Agcaoili samuel0@adventure-works.com null 554-555-0110 null 08/31/2001

12 Mr. James Aguilar james2@adventure-works.com null 1 (11) 500 555-0198 null 07/31/2003

13 Mr. Robert Ahlering robert1@adventure-works.com null 678-555-0175 null 08/31/2003

25

We can see in Table 6 above our Slow Changing Dimension happening inside the Data

Warehouse using Hive. All the information in the table was accessed through Hive, I just

transported it to a more commercial viewing environment so that knowledge is consolidated.

Three things are happening in our SCD:

• First: looking, for example, at ‘ContactID 3’, we have a change in the

“EmailAddress” and “Phone” record for that user. With this identification, the information that

existed there becomes a previous version and is moved to the column “EmailAddress_OLD” and

“Phone_OLD” according to the orange arrows in table 6. That way we keep a history of the last

version before data has been changed.

• Second: based on the data version change, all new information for that user is

inserted in the original columns, as can be seen in the green colors of table 6.

• Third: when comparing ContactID records does not return equal results, it means

that the record does not exist in the table, so it must be inserted in a new line leaving the columns

“*** _ OLD” without information just waiting for the moment when the table dimension changes,

as indicated by the red color in table 6.

26

5. Final Considerations

The use of Apache Hadoop for a Big Data environment only brought advantages to the

project. Using distributed storage and parallel processing helps to make the project more flexible

and generate productivity without much bureaucracy with collected data. The most laborious

and determining part is the initial cluster configurations, that is, adjusting all parameters takes

time and attention.

After configuring the cluster, we installed Hadoop Ecosystem, emphasizing two main

frameworks: Sqoop and Hive. Sqoop was used to move tables between databases and Hive to

store structured data, or to structure unstructured data.

In this business problem, Slow Changing Dimension (SCD) was performed in a Data

Warehouse with Hive for a database stored in MySQL. Initially this database was shared with the

Virtual Machine, moved to MySQL installed on Linux and transported to a datalake in HDFS using

an instruction from Sqoop where it besides moving the source table to HDFS, also inserted in

Hive a table with only the columns under study, the columns that will undergo changes in their

dimensions.

From the definition of this data and considering a Slow Changing Dimension Type 3 it was

possible to build the table that will store the SCDs in Hive in order to store the version of the last

change in a separate column.

With the table scheme created, the initial load was performed by manually entering some

information to visualize the SCDs happening during the time. In order to generate updates in

dimensions, HiveQL provides us with some INSERT, UPDATE, DELETE, MERGE, WHEN MATCHED

/ WHEN NOT MATCHED instructions, all of which are high-level and make the comparison work

between the source table and the destination table flexible, allowing us to carry out rules of

insertion.

With that it was possible to see a Slow Changing Dimension in practice in a Data

Warehouse using Hive in a single table of the Source Database maintaining the versioning of

previous data and updating the data according to the change made in the company

AdventureWorks.

 Following the same concept, we can apply more transformations and rules to the

business problem, helping information management and data management that gradually

change its dimensions.

